Metamorphosis
Metamorphosis

Metamorphosis is the gradual evolution of a source object, through intermediate objects to a target object

Object = image, polygon, curve volume, polyhedron, surface
You must do things right!
Cross dissolves

Problem - misaligned regions
Issues in morphing

- Correspondence:
 - Feature specification
 - Warp generation
- Transition control
Some image metamorphosis methods

- Mesh Warping (Wolberg)
- Field Morphing (Beier & Neely)
- Radial Basis Functions (Arad et al, Edge&Maddock)
- Energy minimization (Lee et al)
- Compatible triangulation (Aronov et al, Tal&Elber, Surazhsky et al)
Mesh-based morphing (Wolberg)
Correspondence in mesh warping

A combination of warping two images so they have the same “shape” and then cross-dissolving the resulting images

- **Image warping**: Specify a warp that distorts the first image into the second

- **Cross-dissolve** between image elements: The color of each pixel is interpolated over time from the first image to the corresponding second image value
Intermediate frame in the morph sequence

For each frame f

- Linearly interpolate mesh M between Ms and Mt
- Warp Is to I_1 using meshes Ms and M
- Warp It to I_2 using meshes Mt and M
- Linearly interpolate image I_f between I_1 and I_2
Warping algorithm

Given a source image and two 2D arrays of coordinates S and D, fit splines to produce a continuous mapping.

Apply a two-pass algorithm:

- Map \((u,v)\) to \((x,v)\)
- Map \((x,v)\) to \((x,y)\)
Triangulation-based morphing

Polygon triangulation = A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals
The problem (Aronov et al)

- P1 and P2 are two simple polygons
- Generally cannot be triangulated compatibly without extra points
But

If we are allowed to add (Steiner) points, it can be done
Compatible triangulation
Compatible triangulation

Given two polygons P_1 and P_2 each with n vertices, their compatible triangulation is a joint labeling of their vertices and some of their internal points, such that a triangulation of one polygon admits a triangulation in the other polygon and it is labeled compatibly.
Use in morphing (Tal&Elber)

1. Outline extraction
2. Establishment of correspondence between the boundaries
3. Compatible triangulation
4. Texture mapping
Compatible triangulation algorithm

Intuition: “convexize” the polygons

1. Find a triangulation T_1 (T_2) for P_1 (P_2)
2. Map T_1 into T_1' (T_2') of a convex polygon P
3. Overlaying T_1' and T_2' on P yields a convex subdivision, that can be triangulated into T
4. Map T back into T_1 and T_2 to obtain a compatible triangulation of P_1 and P_2
Polygons with holes
Results
Results
Results
Composing objects like clip-arts