COMPUTER GRAPHICS
T.A.: Gur Harary
- Email: gur@tx.technion.ac.il
- Office: Meyer 1051
- Office hours: Wednesday 15:30-17:30

OSG consultant: Daniel Barsky
- Email: danielbr@tx.technion.ac.il
Administrative Information

- Sites:
 - http://webee.technion.ac.il/~cgcourse/
 - http://moodle.technion.ac.il/
Grades

- Final exam (55%)
- Homework (45%)
 - Dry exercises 10%
 - Wet exercises 35%
- Submission in PAIRS
- Basic programming skills are desirable
Postponements?

No
Postponements?

No
Postponements?

No
Tutorials schedule

- OSG – 4 classes
- Theory – 6 classes
- Solution of problems – 4 classes
Books

- **Computer Graphics with OpenGL**
 - Donald Hearn and M. Pauline Baker

- **Computer Graphics: Principles and Practice**
 - James Foley, Andries van Dam, Steven Feiner and John Hughes

- **Fundamentals of Computer Graphics**
 - Peter Shirley
Books - OSG

- OSG Reference Manual v2.2
 - http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/index.html

- OSG Quick Start Guide
 - http://osgbooks.com/books/osg_qs.html

- Wiki
Project?

http://webee.technion.ac.il/labs/cgm/
OBJECT ORIENTED PROGRAMMING
OOP Concepts

- Modular code.
 - Partitioning the program so that the data is hidden within modules.

- Well defined interface.
 - Defines functionality. Each module has specific functionality.
 - The user is unaware of internal implementation, which can be changed without affecting the external interface.
OOP Concepts

- Data abstraction.
 - Internal data structure is hidden.
 - It is better, if only the module for which certain data belongs, can change it directly.

- Reuse.
 - Classes and inheritance.
Objects

- **State** - object's data
 - Better if controlled only by the object’s methods (data abstraction).

- **Behavior** - object’s methods
 - Part of the interface, if can be invoked by other objects.
 - Part of implementation, if can be invoked only by the object itself.

- **Identity** - unique name
 - A reference is given when object created
Classes

- **Class**
 - Abstraction of object - structure for object definition.
 - Represents common characteristics of all its objects.
 - A new object is created, when a new instance of the class is created.
class Sphere {
 public:
 Sphere(); // Constructor with default values
 Sphere(float r, float c[]); // Constructor with values
 ~Sphere(); // Destructor
 void render(); // renders the sphere
Class definition example

Boolean pick(int x, int y); // picks the sphere
void SetRadius(float r); // set the radius
void SetCenter(float c[]); // set the center
float GetRadius(); // get radius
float[] GetCenter(); // get center

private:
 float radius; // radius of the sphere
 float center[3]; // center of the sphere
};
Creation of a new instance

Sphere *mySphere; // pointer to Sphere Object
float center[3] = { 0.0, 0.0, 0.0};
mySphere = new Sphere(3.0,center); // Create new instance
mySphere->render(); // renders the sphere
Inheritance

class hollowSphere : public Sphere {
 public:
 void showEquator();
 // show equator during render
 float thickness;
}

OPEN SCENE GRAPH
Open Scene Graph

- Graphics toolkit for the development of high-performance graphics applications such as flight simulators, games, virtual reality and scientific visualization.
- Providing an object-oriented framework on top of OpenGL.
Open Scene Graph

3D Application

Scene graph middleware (OpenSceneGraph)

Low-level rendering API (OpenGL)
Open Scene Graph
Open Scene Graph
Open Scene Graph
Scene graph

- A hierarchical tree data structure that organizes spatial data for efficient rendering
Scene graph

- The graph consist the following:
 - Root
 - Nodes
 - Children/parents
 - Branches / Edges
 - Leaves
Scene graph

- Leaves contain geometry
- Other nodes are groups, transformations, and properties
Scene graph
Scene graph

Scene

Road

Translation

Tricycle
Scene graph

Scene
- Road
- Translation
 - Tricycle
 - Translation
 - Front
 - Translation
 - Wheel
 - Handle bars
 - Translation
 - Seat
 - Translation
 - Back
 - Translation
 - Wheel
 - Translation
 - Wheel
 - Translation
 - Wheel
Scene graph

- Scene
 - Road
 - Translation
 - Tricycle
 - Translation
 - Front
 - Translation
 - Wheel
 - Handle bars
 - Seat
 - Back
 - Translation
 - Wheel
Scene graph

Scene

Road
Translation
Tricycle

Translation
Front
Translation
Handle bars
Scale
Wheel

Translation
Seat
Translation
Back
Translation
OSG - Naming Conventions

- Namespaces
 - osg, osgSim, osgFX

- Classes
 - MatrixTransform, NodeVisitor, Optimizer

- Class methods
 - addDrawable(),getNumChildren()

- Class member variables
OSG - Naming Conventions

- Templates
 - `ref_ptr<>`, `graph_array<>`, `observer_ptr<>`

- Statics
 - `s_applicationUsage`, `s_ArrayNames()`

- Globals
 - `g_NotifyLevel`, `g_readerWriter_BMP_Proxy`
Scene Graph Classes

- Node – base class
- Group – base class with children
- Geode – Geometry Node class
 - osg::Drawable
- MatrixTransform – contains a trans. matrix
- LOD – Level of Details
- Switch – enable/disable children
Geometry Classes

- **Drawable** – store geometric data
 - **ShapeDrawable** (Drawable)
 - predefined shapes
 - **Geometry** (Drawable)
 - Vertex array, texture coordinates, color, normal.
- **PrimitiveSet**
 - Triangles, quads ...
- **Array classes**
 - Vertices, colors, normals, texture coordinates
- **Vector classes**
Installing OSG

- **Download for VS8 (2005)**
 - openscenegraph-all-2.8.2-win32-x86-vc8osp1-Debug.zip

- **Download for VS9 (2008)**
 - openscenegraph-all-2.8.2-win32-x86-vc90-Debug.zip

- **Download for VS10 (2010)**
 - OpenSceneGraph-3.0.1-VS10.0.30319-x86-debug-12741.7z
Installing OSG

- Unzip the zip file to C:\OSG

- Some notes:
 - Make sure you downloaded a zip file that is consistent with your VS version.
 - 64 bit computers can use x86 binaries – use one of the links from the previous slide.
Create new project

![Visual Studio Start Page](image)
Create new project

Choose Win32 console application and name
Create new project

- Download Class1.cpp from the course page
- Remove original main and add Class1.cpp
Include directories
Define LIBs

Additional Library Directories
Specifies one or more additional paths to search for libraries; configuration specific; use semi-colon delimiter.
Define LIBs
Define LIBs

- osgXXXd.lib files are for debug mode
- For release mode use osgXXX.lib files (without the “d”)

Compile and run

- Build – F7, Run – Ctrl + F5, Debug – F5
HELP!!!

- XXX.dll not found

- Correct solution:
 - Go to “My Computer” → System Properties → Advanced system settings → Environment variables
 - Add C:\OSG\bin to system::PATH variable

- Another solution:
 - Copy all dlls from C:\OSG\bin to home project directory.
HELP!!!

- XXX.dll not found
- Correct solution:
HELP!!

- MSVCRTD.lib(crtexew.obj) : error LNK2019
- Solution:
 change the “SubSystem" in your Linker settings from "Windows" to "Console"