Interfacing the I/O Subsystem - Issues

- **What talks to the devices?**
 - Programmed I/O: the CPU
 - Delegation of responsibility:
 - DMA (Direct Memory Access): block transfers
 - I/O Processor: more general coprocessor
 - RDMA (DMA to/from a remote processor)

- **Where does the I/O data path attach?**
 - cache
 - main memory

- **How do devices draw the CPU’s attention?**
 - Polling vs. interrupts
 - Identifying the requester
 - Priority arbitration

- **Communication channels**
 - shared (bus) vs. point-to-point
 - synchronous vs. asynchronous

- **Capacity, Access Time, Bandwidth**
I/O Communication - Trends

- From shared bus to switched
- **Semantics:**
 - Send/Receive
 - DMA / RDMA
- **InfiniBand**
 - **Semantics:**
 » Send/Receive
 » RDMA
 - Transfer rate: 20Gb/s, full duplex end-to-end
 - Latency: several microseconds
 - Support for quality of service
 - Included in a growing number of the top 500 computers
 - Israel leads the world (Mellanox; Voltaire)
On-Chip Communication Trends

• From shared bus to switched

• Network on chip with QoS
Operating System: The Brain

• Mission: provide an environment for running user programs conveniently and efficiently.
 – management of shared resources.
 – separation and protection among different users and between users and the system.
 – provide a “standard” representation of the machine to user programs.

• Main tasks:
 – Management of processes (create, stop, resume, communication, deadlock-avoidance)
 – Main-memory management: decide which processors to load in to memory that has been freed; memory allocation
 – Secondary-mem management: allocate space on disk and manage schedule.
 – Manage I/O system: buffer caching; interface to device drivers; I/O queues (printing etc.).
 – File system
 – Protection
 – Communication
 – Command interpretation
 – accounting
Hardware Support for the Operating System

• **Timers**
 – periodic interrupts
 – prevent processor-stealing by user process
 – prevent hang-up on infinite loops or errors
 – support time-dependent actions

• **Support interrupts and masks**

• **Base and bound registers for protection**

• **Dual-mode operation (user/system mode)**

• **Mode bit**
Hardware + OS performance

- Polling vs. interrupts
- Frequent process switch ==> cache flush ==> thrashing
- Data placement on disk determines performance.
 - In Unix, placing data on one disk drive and i-nodes on another dramatically increased performance
 - In video servers, accommodate dependence of transfer rate on track location
- Hardware support for interrupt-source determination improves performance.
Multi-Processor/Computer Architectures

- **Symmetric multiprocessor:**
 - Shared bus and memory
 - A processor that becomes available grabs the next task in the queue

- **Single-instruction – multiple data (SIMD)**

- **Multiple instruction – multiple data (MIMD)**
 - shared memory
 - UMA
 - NUMA
 - or:
 - message passing
Multi-Computer Architectures

• Parallel computers

• Networks of workstations

• Grid computing
 Looser and looser coupling among the machines (e.g., each runs its own OS, interconnection through standard networks)

• Challenges include:
 – scalability
 – latency hiding
 – security
 – fault tolerance
Course Summary

• Goals:
 – learn and understand the components of a modern computer system and the interaction among them.
 – understand the computer as a system, not merely a collection of modules.
 – learn to “think systems”:
 » interplay among components
 » trade-offs

• Main topics:
 – Performance measures
 – Memory system
 – Processor (control)
 – I/O

• Solving a systems problem:
 – Understand it: build a mental picture of the system
 – Use common sense
 – Employ specific techniques in the solution
 – Evaluate the solution against alternatives
Related Courses

- Advanced computer and VLSI architecture
- Compilers (particularly back end)
- VLSI
- Operating systems
- Tools for analysis of computer systems
Exam

• Take the time to read the problems
• Every line serves to restrict the problem, so build an entire picture in your mind before beginning to answer
• Be concise and precise:
 – answer the question being asked and only it
 – use accepted terminology
• Manage your time smartly!
• Don’t look for close matches with previous problems. Keep your head on your shoulders and think!
• Do your best and don’t worry; the grade is our responsibility!

Good luck!