Instruction related to the Wet (Matlab) assignments

- The following rules and guidelines are here to make your lives (and mine) easier. Please read these carefully.

- The assignments must be carried out in groups of 1 or 2 students; groups of 3 are not allowed. Students who find themselves alone on the assignments are urged to find a partner or communicate with the other groups to share their ideas/problems; the Matlab assignments are long and arduous, and it is not recommended to try them alone. If you are in a group of 2 and decide to divide coding tasks, you are expected to understand your partner's code inside-out. If you do this your preparation for the mid-semester and final defenses will be trivial. Questions in the two defenses will be asked on random parts of the code to any or both of the coders. The defenses will consist of conceptual questions as well as questions on the functions implemented in your code, so make sure you understand the assignments before jumping into coding.

- The code must be organized and clean. Students who need help with their code will find that I can be much more helpful when I can read it easily. Keep in mind that later assignments will depend on functions from the earlier ones, so make your code modular and easy to adapt to other optical systems.

- You are allowed and even encouraged to discuss problems between groups, but all code must be completely original. Copy/pasting codes, even partially, will impact the grade of all the groups with identical code.

- Code that runs for more than 1 minute on a fast computer MUST be reworked. AVOID for/while loops as much as you can when dealing with large arrays. Matlab runs much more efficiently using vector algebra.

- Please use subplots as much as you can (to a reasonable extent). I do not want code that outputs 20 figures in separate windows. Presentation counts as part of the grade for each assignment. Figures must have a title and labels in a fashion similar to those given in the examples on assignment 1; they must appear neither barren nor cluttered. I do not want to have to modify the code to get the output I want, with the exception of commenting/un-commenting lines of code (again, to a reasonable extent).

- Please write your code in such a way that it is easy for me to modify it. For example, I may want to change some parameters (number of pixels, lengths, shapes...) to see the code's behavior, or display only a subset of figures. Instructions from you on how to use/modify the code are VERY welcome.

- You must submit your WORKING code by email by the deadline, in a ZIP file containing the
Matlab directory. The email must include the names and student IDs of the students in the group, and the name of the file that I must run must be called "Main_1.m" for the first assignment, and so forth. NON-WORKING code submitted by the deadline will NOT be accepted, and you will suffer a 5% penalty per day of late submission. Don't be worried if some of your figures look unnatural or pixelated; you may have reached the numerical limits of the Fourier algorithm you implemented. If you have doubts about your code, or if the output you get does not match the one given in the example, contact me and I will see if I can help you out.

- Students who need help with Matlab in general are welcome to send me an email anytime or see me in my office at the designated hours. Please be concise and to the point in your questions. I will answer simple or complicated questions to the best of my abilities, but I expect you to do a minimum of homework first (ie. look through the Matlab help files, etc.).

- Last but not least: I understand that you may feel pressure during the semester from other courses or from the written assignments in this course. Since you will inevitably end up debugging your code for more time than it actually takes to write it up, I recommend starting the Matlab assignments as soon as they are published, so that if you get stuck I'll have time to help you out.

Good Luck and Happy Coding!

Bar
