DFS
Strongly Connected Components
Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- A **strongly connected component** (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$ exist.
Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC})$.
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there’s an edge between the corresponding SCC’s in G.
- G^{SCC} for the example considered:

![Graph Diagram]

graphs-2 - 3
$G^{	ext{SCC}}$ is a DAG

Lemma 1
Let C and C' be distinct SCC's in G, let $u, v \in C$, $u', v' \in C'$, and suppose there is a path $u \sim u'$ in G. Then there cannot also be a path $v' \sim v$ in G.

Proof:
- Suppose there is a path $v' \sim v$ in G.
- Then there are paths $u \sim u' \sim v'$ and $v' \sim v \sim u$ in G.
- Therefore, u and v' are reachable from each other, so they are not in separate SCC's.
Simple SCC Algorithms

- Computing the **transitive closure** of the adjacency matrix of the graph.

- We want to compute a sequence of $n = |V|$ matrices.
- For matrix $A_k \ (1 \leq k \leq n)$:
 Entry i,j indicates whether or not there is a path between vertex i and j going only through vertices from the set $\{1,2,\ldots,k\}$.

- The adjacency matrix (A_0) tells us if there is a single edge path between i and j ($= a$ path not going through any other vertices).
- The last matrix in the series, A_n, should tell us if there is any path between i and j.
Suppose we have computed $A_0, A_1, \ldots, A_{k-1}$. We can now compute

$$A_k[i,j] = A_{k-1}[i,j] \text{ or } (A_{k-1}[i,k] \text{ and } A_{k-1}[k,j])$$

\Rightarrow one way to implement this algorithms is:

$|V|$ passes, each pass makes one check for each pair of vertices ($|V|^2$).

\Rightarrow Total Running Time: $\Theta(|V|^3)$.
Transpose of a Directed Graph

- $G^T = \text{transpose}$ of directed G.
 - $G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}$.
 - G^T is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time.
- G and G^T have the same SCC’s. (u and v are reachable from each other in G if and only if reachable from each other in G^T.)

Algorithm to determine SCCs

\(\text{SCC}(G) \)
1. call \(\text{DFS}(G) \) to compute finishing times \(f[u] \) for all \(u \)
2. compute \(G^T \)
3. call \(\text{DFS}(G^T) \), but in the main loop, consider vertices in order of decreasing \(f[u] \) (as computed in first DFS)
4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: \(\Theta(V + E) \).
Example

\(G \)

a \(\rightarrow\) b

13/14 \(\rightarrow\) 11/16

e \(\rightarrow\) 12/15

f \(\rightarrow\) 3/4

g \(\rightarrow\) 2/7

h

c \(\rightarrow\) 1/10

d \(\rightarrow\) 8/9

h
Example

G^T

Graph with nodes labeled a, b, c, d, e, f, g, h.
Example
How does it work?

Intuition for proof:
- In the 1st DFS, for every tree root, we find all the vertices it can reach.
- In the 2nd DFS, we make the same vertices be tree roots (by choosing highest numbered vertices to start with).
- In the 2nd DFS, we find all the vertices a root can reach in G^T; \Rightarrow these are vertices that can reach the root in G.
- \Rightarrow all these vertices can reach each other (through the root).
- \Rightarrow each tree contains all vertices that can reach each other (= SCC).

- **Notation:**
 - $d[u]$ and $f[u]$ always refer to first DFS.
 - Extend notation for d and f to sets of vertices $U \subseteq V$:
 - $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
 - $f(U) = \max_{u \in U} \{f[u]\}$ (latest finishing time)
SCCs and DFS finishing times

Lemma 2
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:
- **Case 1: $d(C) < d(C')$**
 - Let x be the first vertex discovered in C.
 - At time $d[x]$, all vertices in C and C' are not yet discovered.
 - There exist paths from x to all vertices in C and C'.
 - All vertices in C and C' are descendants of x in DFS tree.
 - $f[x] = f(C) > f(C')$.
SCCs and DFS finishing times

Lemma 2
Let C and C' be distinct SCC's in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:

- Case 2: $d(C) > d(C')$
 - Let y be the first vertex discovered in C'.
 - At time $d[y]$, all vertices in C and C' are not there yet discovered.
 - There is a path from y to each vertex in $C' \Rightarrow$ all vertices in C' become descendants of $y \Rightarrow f[y] = f(C')$.
 - By lemma 1, since there is an edge (u, v), there is no path from C' to C.
 - No vertex in C is reachable from y.
 - Thus, at time $f[y]$, all vertices in C are still not discovered.
 - Therefore, for all $w \in C, f[w] > f[y]$, which implies that $f(C) > f(C')$.

SCCs and DFS finishing times

Corollary 1
Let C and C' be distinct SCC’s in $G = (V, E)$. Suppose there is an edge $(v, u) \in E^T$, where $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:
- $(v, u) \in E^T \Rightarrow (u, v) \in E$.
- Since SCC’s of G and G^T are the same, $f(C') < f(C)$, by Lemma 2.
Correctness of SCC

- When we do the second DFS, on G^T, start with SCC C such that $f(C)$ is maximum.
 - The second DFS starts from some $x \in C$, and it visits all vertices in C.
 - Corollary 1 says that since $f(C) > f(C')$ for all $C \neq C'$, there are no edges from C to C' in G^T.
 - Therefore, DFS will visit *only* vertices in C.
 - Which means that the DFS tree rooted at x contains exactly the vertices of C.
The next root chosen in the second DFS is in SCC C' such that $f(C')$ is maximum over all SCC’s other than C.

- DFS visits all vertices in C, but the only edges out of C' go to C, which we’ve already visited.
- Therefore, the only tree edges will be to vertices in C'.

We can continue the process.

Each time we choose a root for the second DFS, it can reach only:
- vertices in its SCC (through tree edges).
- vertices in SCC’s already visited in second DFS (but not through tree edges).