Depth-First Search and Topological Sort

August 9, 2008

This time we consider the Graph-DFS algorithm as depicted in Figure 1. It performs a depth-first search of \(G \) and creates a forest, by repeatedly calling the recursive DFS procedure on a fresh unmarked node whenever the call to the DFS\((G, v)\) procedure returns to the top-level and not all nodes have been marked. A node \(v \) is considered unmarked as long as \(d[v] = \bot \), and it is marked once \(d[v] \) is set to a finite time. Our focus in this note will be the connection between DFS and Topologically sorting a DAG.

\[
\text{Graph-DFS}(G): \\
1 \quad \text{time} \leftarrow 0 \\
2 \quad \text{for every } v \in V \text{ do } d[v] \leftarrow \bot; f[v] \leftarrow \bot; /* nodes start out unmarked */ \\
3 \quad \text{for every } v \in V \text{ do } \\
4 \quad \text{if } v \text{ not yet marked then } \\
5 \quad \text{DFS}(G, v)
\]

Figure 1: Graph-DFS

We say that node \(w \) is reachable from \(v \) in \(G \), denoted \(v \rightarrow w \), if there is a path from \(v \) to \(w \) in \(G \). We now consider a few of the properties of Graph-DFS, stated in terms of the discovery times \(d[v] \) and finishing times \(f[v] \) for the nodes. Clearly, at the end of the Graph-DFS algorithm we have that \(1 \leq d[v] < f[v] \leq 2|V| \) for all \(v \in V \). Moreover, since the time variable is incremented before every use, the times assigned to the \(d \) and \(f \) events are all distinct.

We start with the following lemma that captures inclusion or exclusion property of \(d-f \) intervals of different nodes: For any two nodes, either one node’s \(d-f \) interval contains the other’s, or the two intervals do not intersect. So \(d \) and \(f \) act as correctly balanced parentheses (SogRayim), with \(f[v] \) the closing parenthesis matching \(d[v] \):
DFS(G, s):

11 \hspace{1em} \text{time} \gets \text{time} + 1
12 \hspace{1em} \text{d}[s] \gets \text{time} \quad \text{/* discovery time for } s \text{ */}
13 \hspace{1em} \text{visit } s
14 \hspace{1em} \text{for every } w \in \text{Adj}[v] \text{ do}
15 \hspace{2em} \text{if } \text{d}[w] = \bot \text{ then} \quad \text{/* w unmarked */}
16 \hspace{2em} \text{DFS}(G, w)
17 \hspace{1em} \text{DFS_tree} \gets \text{DFS_tree} \cup \{(s, w)\}
18 \hspace{1em} \text{time} \gets \text{time} + 1
19 \hspace{1em} \text{f}[s] \gets \text{time} \quad \text{/* finishing time for } s \text{ */}

Figure 2: DFS procedure (with timestamping)

Lemma 1 If \(d[v] < d[w] < f[v] \) then

1. \(d[v] < d[w] < f[w] < f[v] \), and
2. there is a path \(v \leadsto w \) in \(G \).

Proof: This immediately follows from Theorem 23.6 in the book. \(\square \)

We now turn to discuss DFS on directed acyclic graphs.

Definition 1 \(G \) is a DAG if it is a directed graph that contains no cycles.

\((\text{DAG} = \text{Directed, Acyclic Graph.}) \)

We can now show:

Lemma 2 Let \(G \) be a DAG. If \(d[v] < d[w] \) and \(v \leadsto w \) in \(G \), then
\(d[v] < d[w] < f[w] < f[v] \).

Proof: By Lemma 1 it suffices to show that \(d[w] < f[v] \). We prove the claim for all nodes \(v, w \) in \(G \) by induction on the distance \(k = \delta(v, w) \) between \(v \) and \(w \). The base case is \(\delta(v, w) = 1 \). By assumption, \(d[v] < d[w] \). Since \(w \in \text{Adj}[v] \), the loop on line 14-15 will test for \(d[w] = \bot \) during the execution of \(\text{DFS}(G, v) \). Since this occurs before lines 18-19 are reached, it happens when \(\text{time} + 1 < f[v] \). If \(d[w] \neq \bot \) at that point, then \(d[w] \) was set after \(d[v] \) and so \(d[w] < f[v] \), as desired. If \(d[w] = \bot \) there,
Lemma 3

If G is a DAG and $v \leadsto w$ in G, then every execution of Graph-DFS satisfies that $f[w] < f[v]$.

- Assume by way of contradiction that $d[w] < d[v]$. In this case we have that $d[w] < d[v] < f[w]$ and so $w \leadsto v$ by Lemma 1. But since $v \leadsto w$ is given, we obtain that there is a cycle $w \leadsto v \leadsto w$ in G, contradicting the assumption that G is a DAG.

- Finally, assume that $d[v] < d[w]$. Recall that $v \leadsto w$ in G by assumption. It now follows by Lemma 2 that $f[w] < f[v]$, as desired.
Definition 2 A topological sort of a directed graph G is an ordering of the nodes of V satisfying that for all $(v, w) \in E$ the node v appears before w in the ordering.

It is immediate to check that if G contains a cycle then it can not be topologically sorted, since if both $v \Rightarrow w$ and $w \Rightarrow v$ hold in G, then each of the two nodes must appear before the other in each and every any topological sort of G. Lemma 3 immediately implies

Corollary 1 If G is a DAG and $f[v] < f[w]$ holds in some run of Graph-DFS on G, then there is no path $v \Rightarrow w$ on G.

Based on Corollary 1, we obtain that a DAG can be topologically sorted by running Graph-DFS and ordering the nodes according to decreasing $f[s]$ order. The complexity of topological sort when performed in this manner is $O(|V| + |E|)$.