We focus on the BFS algorithm as depicted in Figure 1. It performs a breadth-first search of G starting at a node s.

\[
\begin{align*}
\text{BFS}(G, s): & \\
1 & \text{Unmark all vertices} \\
2 & \text{visit and mark } (s) \\
3 & \text{Enqueue}(Q, s) \\
4 & \text{BFS} _\text{tree} \leftarrow \emptyset \\
5 & \text{while } Q \neq \emptyset \text{ do} \\
6 & \quad v \leftarrow \text{Dequeue}(Q) \\
7 & \quad \text{for every } w \in \text{Adj}[v] \text{ do} \\
8 & \quad \quad \text{if } w \text{ not yet visited then} \\
9 & \quad \quad \quad \text{visit and mark } (w) \\
10 & \quad \quad \text{Enqueue}(Q, w) \\
11 & \quad \text{BFS} _\text{tree} \leftarrow \text{BFS} _\text{tree} \cup \{(v, w)\}
\end{align*}
\]

Figure 1: The BFS Algorithm

We say that node v is \textit{reachable} from s, denoted $s \leadsto v$, in G if there is a path from s to v in G. By \textit{time} r we shall refer to the r^{th} time at which Line 5 (the start of the while loop) is reached.

\textbf{Definition 1} Define $\delta(v)$, node v's distance (from s), to be number of edges on the shortest path from s to v if v is reachable from s, and $\delta(v) = \infty$ otherwise.

We start with the following lemma that captures some of the basic properties of the BFS algorithm.
Lemma 1 Every time Line 5 is reached, as well as when the algorithm completes, the following hold:

1. All marked nodes are reachable from s in G;
2. If w /∈ Q is a marked node and (w, w') ∈ E, then w' is marked;
3. If Q ≠ Ø and the node v at the front of Q is of distance δ(v) = k then
 (a) The set of marked nodes consists exactly of all nodes of distance ≤ k, as well as all nodes of distance k + 1 that are in Q; and
 (b) The queue Q consists of a sequence of nodes of distance k followed by a (possibly empty) sequence of nodes of distance k + 1.

Proof: We prove the claim by induction on the number r of times Line 5 has been reached in the algorithm.

Base: For r = 1 we have that Q = ⟨s⟩, node s is marked, its distance is δ(s) = 0 and all nodes of distance > 0 are not in Q and are unmarked. Finally, there are no marked nodes outside of Q. All parts immediately follow.

Inductive Step: Assume that the claim holds for r. If Q = Ø there, then Lines 6-11 are skipped and the algorithm completes with the properties holding. Otherwise, Q ≠ Ø, Lines 6-11 are performed and Line 5 is reached once more at time r + 1. In the sequel, we shall denote the node at the front of Q at r by v. We shall show that the claims hold at r + 1.

1. Part 1 at time r + 1 follows from the fact that it holds at time r and that only neighbors w of v are added to Q between time r and r + 1. Since v is in Q at r, it is marked by part 3(a). Thus, by the inductive hypothesis for part 1, v is reachable from s and so w is also reachable, since there is a path s ↦ v → w in G.

2. The node v at the front of Q at time r is marked by part 3(a). It is removed from Q on Line 6, while all of its unmarked neighbors are marked by Lines 8 and 9. Thus, the claim is true for v. By the inductive hypothesis, part 2 holds at time r. It follows that part 2 holds at r + 1 since v is the only node that is both marked and not in Q at time r + 1 that was not so already at time r.

3. For part 3, observe by part 1 that the node v at the front of Q at r is reachable from s. Thus, δ(v) < ∞. Denote δ(v) = m. Lines 6–11 will remove v from Q and
add those of its neighbors that are unmarked at \(r \) to the end of \(Q \). By part 3(a) for time \(r \) we have that all added neighbors are unmarked and hence of distance \(> m \). But since \(\delta(v) = m \) we have that \(\delta(w) \leq m + 1 \) for every neighbor \(w \) of \(v \), since there is a path \(s \leadsto v \leadsto w \) of length \(m + 1 \). Thus, the added nodes are of distance \(m + 1 \). We consider two possibilities:

- **The node \(v' \) following \(v \) in \(Q \) at \(r \) is of distance \(\delta(v') = m \):** In this case part 3(a) holds at \(r + 1 \) by the inductive assumption together with the fact that by Lines 9 and 10 every node that is added to \(Q \) is marked. For part 3(b), the fact shown above that the nodes that are marked (on Line 9) and added to \(Q \) (on Line 10) are of distance \(m + 1 \), combined with the inductive assumption of 3(b) for time \(r \), imply the claim for time \(r + 1 \).

- **The node \(v' \) following \(v \) in \(Q \) at \(r \) is of distance \(\delta(v') = m + 1 \):** In this case, part 3(b) at time \(r \) implies that \(v \) is the only node of distance \(m \) in \(Q \) at \(r \). Parts 3(a) and 3(b) should hold at time \(r + 1 \) with respect to \(k = m + 1 \).

(a) Since the only nodes that were added to \(Q \) between \(r \) and \(r + 1 \) are of distance \(m + 1 \), we have from 3(b) at time \(r \) that there are no nodes of distance \(k + 1 = m + 2 \) in \(Q \). Thus, Moreover, by 3(a) no node of distance greater than \(m + 1 \) was marked at \(r \) and since only nodes of distance \(m + 1 \) were marked on lines 8 and 9, no nodes of distance \(> m + 1 \) are marked at \(r + 1 \). To complete 3(a) we need to show that all nodes of distance \(\leq m + 1 \) are marked at time \(r + 1 \). For all nodes of distance \(\leq m \) this is already true at time \(r \) and so also at time \(r + 1 \). For every node \(u' \) of distance \(m + 1 \) there is a node \(u \) of distance \(m \) such that \((u, u') \in E\). If \(u \neq v \) (where \(v \) is the node removed from \(Q \) on line 6), then at time \(r \) we had that \(u \) was marked and \(u \notin Q \). By the inductive assumption part 3 holds at \(r \), and it implies that \(u' \) is marked at \(r \), and remains marked at \(r + 1 \), as claimed. Alternatively, \(u = v \), in which case it is marked on line 9 if it has not been marked beforehand.

(b) Finally, for part 3(b) observe that \(k = m + 1 \) at \(r + 1 \). The inductive assumption guarantees that at time \(r \) the queue \(Q \) consists of a sequence of nodes of distance \(m \), followed by a sequence of nodes of distance \(m + 1 \). By assumption, the only node of distance \(m \) in \(Q \) at \(r \) is \(v \). Since \(v \) is removed on line 6, there are no nodes of distance \(m \) in \(Q \) at time \(r + 1 \). Finally, as argued above, the only nodes added to \(Q \) are of distance \(k = m + 1 \). It follows that all nodes in \(Q \) at \(r + 1 \) are of distance \(k \), which implies that the claim in part 3(b) holds at \(r + 1 \).
Lemma 2 Every node in Q is eventually removed from Q.

Proof: Suppose that u is in Q at time r. Let f be the number of nodes between u and the front of Q. A straightforward induction on f shows that u will be removed by Line 6 immediately following time $r + f$. □

We can now prove the basic theorem that captures our intuition about the behavior of the BFS algorithm:

Theorem 1 The BFS algorithm marks all and only the nodes that are reachable from the source s in G. Moreover, the order in which the nodes are visited respects their distance from s: $0, 1, \ldots, k, k + 1, \ldots$.

Proof: By part 1 of Lemma 1 we have that only nodes reachable from s are ever visited and marked. For reachable nodes v, we prove by induction on $\delta(v)$ that v will be marked before any nodes of distance $> \delta(v)$ are marked.

Base: If $\delta(v) = 0$ then $v = s$ is the source node. On Line 1 all nodes are unmarked. The source s is marked on Line 2, before any of the other nodes are marked. The claim holds in this case.

Inductive step: Assume that the claim holds for all nodes of depth m, and let $\delta(v) = m + 1$. Since $\delta(v) = m + 1$ there is a node w such that $\delta(w) = m$ and $(w, v) \in E$. By assumption, all such nodes w are marked by the algorithm. Each of these nodes is enqueued on Line 10 immediately after being marked on Line 9. By Lemma 2 all these nodes are eventually removed from Q. When the first of these, say w', is removed, the node v is marked. Since $\delta(w') = m$, we have by Lemma 1 part 3(a) that all nodes of distance $m + 2$ or greater are unmarked, completing the inductive step. □