QuickSort

To sort $A[\text{left}, \text{right}]$:

Divide: Partition $A[\text{left}, \text{right}]$ into two parts:

$$A[\text{left}, \text{p}], \ A[\text{p+1}, \text{right}]$$

where $x \leq y$ for all $x \in A[\text{left}, \text{p}]$ and $y \in A[\text{p+1}, \text{right}]$

Conquer:

- Quick-Sort($A[\text{left}, \text{p}]$)
- Quick-Sort($A[\text{p+1}, \text{right}]$)

Combine: Automatic (no action needed)
Quick-Sort

Quick-Sort(A,left,right)
1 if left < right
2 \[p \leftarrow \text{Partition}(A,\text{left},\text{right}) \]
3 \[\text{Quick-Sort}(A,\text{left},p) \]
4 \[\text{Quick-Sort}(A,p+1,\text{right}) \]

To sort \(A[1..n] \): \[\text{Quick-Sort}(A,1,n) \]
Partition

- Choose an element of A: $e \leftarrow A[left]$
- Scan from right until $A[R] \leq e$ is found
- Scan from left until $A[L] \geq e$ is found
- If $L < R$ then exchange $A[L] \leftrightarrow A[R]$
- Continue scanning and exchanging until $R \leq L$
Partition

Partition(A, left, right)

1 \(e \leftarrow A[left] \)
2 \(L \leftarrow left-1 \)
3 \(R \leftarrow right+1 \)
4 while TRUE
5 \(\) repeat \(R \leftarrow R-1 \) until \(A[R] \leq e \)
6 \(\) repeat \(L \leftarrow L+1 \) until \(A[L] \geq e \)
7 \(\) if \(L < R \) then
8 \(\) \(A[L] \leftrightarrow A[R] \)
9 \(\) else
10 \(\) return \(R \)

Running Time:
\[T(n) = \Theta(n) \]
for \(n = r-l+1 \)
Quick-Sort: Running Time

\[T(n) = \Theta(n) + T(p - \text{left}) + T(\text{right} - p) \]

\[n = \text{right} - \text{left}. \]

\(T(n) \) depends on the position of \(p \) in the range \([\text{left}, \ldots, \text{right}]\)
Worst-Case

Running Time:

\[T(n) = T(n - 1) + T(1) + \Theta(n) = \]
\[= T(n - 1) + \Theta(n) = \]
\[\downarrow \]
\[= \sum_{k=1}^{n} \Theta(k) = \Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2) \]

\[\Theta(n^2) \]
Worst-Case Running Time

\[T(n) = \max_{1 \leq p \leq n-1} \{ T(p) + T(n - p) + \Theta(n) \} = \]

\[= \max_{1 \leq p \leq n-1} \{ T(p) + T(n - p) \} + \Theta(n) \]

We "guess" \(T(n) \leq cn^2 \) and verify inductively

\[T(n) \leq \max_{1 \leq p \leq n-1} \{ cp^2 + c(n - p)^2 \} + \Theta(n) = \]

\[= c \cdot \max_{1 \leq p \leq n-1} \{ p^2 + (n - p)^2 \} + \Theta(n) = \]

the maximum
\[= c \cdot (1^2 + (n - 1)^2) + \Theta(n) = \]

is achieved at
\[= \Theta(n^2) \]

one of the ends
Quick-Sort

Best-Case Running Time

\[
T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \log n)
\]
Quick-Sort

Best-Case Running Time

\[
T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \log n)
\]
Balanced Partitioning

\[T(n) = T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + n = \Theta(n \log n) \]
Average Case: Intuition

\[
\begin{align*}
\text{n} & \quad \text{l} \quad \text{n-1} \\
\text{Θ(n)} \\
(\text{n - 1})/2 & \quad (\text{n - 1})/2 \\
\text{Θ(n)} \\
(\text{n - 1})/2 + 1 & \quad (\text{n - 1})/2
\end{align*}
\]
Average-Case Running Time

\[T(n) = n + T(p - 1) + T(n - p) \]

\[T_{\text{avg}}(n) = \sum_{k=1}^{n} \Pr[p = k] \cdot (n + T_{\text{avg}}(k - 1) + T_{\text{avg}}(n - k)) \]

The partitioning element has probability \(\frac{1}{n} \) to go into each of \(n \) final positions

\[T_{\text{avg}}(n) = n + \frac{1}{n} \cdot \sum_{k=1}^{n} \left(T_{\text{avg}}(k - 1) + T_{\text{avg}}(n - k) \right) \]

Partition probability recursion
Average-Case Running Time

\[T_{\text{avg}}(n) = n + \frac{2}{n} \cdot \sum_{k=1}^{n} T_{\text{avg}}(k - 1) \]

Multiply both sides by \(n \)

\[n \cdot T_{\text{avg}}(n) = n^2 + 2 \cdot \sum_{k=1}^{n} T_{\text{avg}}(k - 1) \]

Substitute \(n-1 \) for \(n \)

\[(n - 1) \cdot T_{\text{avg}}(n - 1) = (n - 1)^2 + 2 \cdot \sum_{k=1}^{n-1} T_{\text{avg}}(k - 1) \]

Subtract

\[nT_{\text{avg}}(n) - (n - 1)T_{\text{avg}}(n - 1) = n^2 - (n - 1)^2 + 2T(n - 1) \]
Average-Case Running Time

\[nT_{avg}(n) - (n - 1)T_{avg}(n - 1) = n^2 - (n - 1)^2 + 2T(n - 1) \]

Simplify: \[nT_{avg}(n) = (n + 1)T_{avg}(n - 1) + 2n - 1 \]

Drop the \(-1\) to turn = into \(\leq\) and

Divide by \(n(n+1):\)

\[\frac{T_{avg}(n)}{n + 1} \leq \frac{T_{avg}(n - 1)}{n} + \frac{2}{n + 1} \]
Average-Case Running Time

\[
\frac{T_{avg}(n)}{n + 1} \leq \frac{T_{avg}(n - 1)}{n} + \frac{2}{n + 1}
\]

Define: \[S(n) = \frac{T_{avg}(n)}{n + 1}\]

Substitute in the above formula to get:

\[
S(n) \leq S(n - 1) + \frac{2}{n}
\]
Average-Case Running Time

\[S(n) \leq S(n - 1) + \frac{2}{n} \]

Expand, to get:

\[S(n) \leq S(n - 2) + \frac{2}{n - 1} + \frac{2}{n} \]

\[\leq 2 \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n - 1} + \frac{1}{n} \right) \]

But,

\[S(n) \leq 2 \sum_{k=1}^{n} \frac{1}{k} = 2H_n = \Theta(\log n) \]
Average-Case Running Time

\[S(n) = O(\log n) \]

But \[S(n) = \frac{T_{avg}(n)}{n + 1} \]

So that \[T_{avg}(n) = O(n \log n) \]
Randomization

• Randomly permute the input (before sorting)
 – tree of all possible executions
 most of them finish fast

• Choose partitioning element e randomly
 at each iteration
 – easier to analyze
 – same "good" behavior
Randomized-Partition

Rand-Partition (A, left, right)

1. q ← Random(left, right)
3. return Partition(A, left, right)

Running Time: \(T(n) = \Theta(n) \)
Randomized Quick-Sort

Rand-Quick-Sort(A, left, right)
1 if left < right
2 p ← Rand-Partition(A, left, right)
3 Rand-Quick-Sort(A, left, p)
4 Rand-Quick-Sort(A, p+1, right)

Expected Running Time: \(T(n) = O(n \log n) \)
Variants of Quick-Sort

• When we get to small sub-arrays, do not call Quick-Sort recursively
 – Run Insertion-Sort on the sub-arrays
 – Go back up recursion and run Insertion-Sort on the nearly sorted array

• Different ways to pick the pivot element:
 – Always pick the first element
 – Pick a random element
 – Pick the median of some elements
Using Medians of 3

Median-of-3-Partition(A, left, right)

1 if left < right
2 sort (A[left],
 A[(left+right)/2],
 A[right])
3 A[left] ↔ A[(left+right)/2]
4 return Partition(A, left, right)

Expected Running Time: \(T(n) = \Theta(n) \)
Randomized Medians of 3

\textbf{Rand-Median-of-3-Partition} (A, left, right)

1. if left < right
2. Randomly choose $j \leq k \leq l \leq \text{right}$
4. $A[left] \leftrightarrow A[k]$
5. return $\text{Partition}(A, left, right)$

\textbf{Expected Running Time:} $T(n) = \Theta(n)$
Notes on Quick-Sort

• Fast on average - $\Theta(n \log n)$

• Worst-case $\Theta(n^2)$ but unlikely with medians-of-3

• Good cache performance

• In place sorting
 (does use extra storage, for recursion stack)

• Not a stable sort