The Sorting Problem

Input: A sequence of n numbers $\langle a_1, a_2, \ldots, a_n \rangle$

Output: A permutation (reordering) $\langle b_1, b_2, \ldots, b_n \rangle$ of the input sequence such that $b_1 \leq b_2 \ldots \leq b_n$

Example:

- **Input:** $\langle 31, 41, 59, 26, 41, 58 \rangle$
- **Output:** $\langle 26, 31, 41, 41, 58, 59 \rangle$
Sorting - The Data

- In practice, we usually sort records with keys and satellite data (non-key data)

- Sometimes, if the records are large, we sort pointers to the records

- For now, we ignore satellite data assume that we are dealing only with keys only i.e. focus on sorting algorithms
Recursion

Insertion-Sort(A, n)

if n > 1

Insertion-Sort(A, n-1)
Put-In-Place(A[n], A, n)

T(n) = T(n-1) + n
Divide and Conquer

Divide
the problem into several *(disjoint)* sub-problems

Conquer
the sub-problems by solving them recursively

Combine
the solutions to the sub-problems into a solution for the original problem
Divide and Conquer

Running Time:

\[n = n_1 + n_2 + \ldots + n_k \]
\[T(n) = T_{\text{divide}}(n) + \]
\[+ T(n_1) + T(n_2) + \ldots + T(n_k) + \]
\[+ T_{\text{combine}}(n) \]

If all sub-problems are of same size:

\[n = n_{\text{sub}} \times \left(\frac{n}{n_{\text{sub}}} \right) \]
\[T(n) = T_{\text{divide}}(n) + \]
\[+ n_{\text{sub}} \times T\left(\frac{n}{n_{\text{sub}}} \right) + \]
\[+ T_{\text{combine}}(n) \]
Merge-Sort

Divide: Split the list into 2 equal sized sub-lists

Conquer: Recursively sort each of these sub-lists (using Merge-Sort)

Combine: Merge the two sorted sub-lists to make a single sorted list

\[T(n) = T_{\text{split}}(n) + 2T(n/2) + T_{\text{merge}}(n) \]
Merge

Merge\((A, p, q, r)\)

Point to the beginning of each sub-array
choose the smallest of the two elements
move it to merged array
and advance the appropriate pointer

Running Time: \(cn\) for some constant \(c > 0\)
and \(n = r-p+1\)
Merge-Sort

Merge-Sort *(A, p, r)*

\[
\text{if } \ p < r
\]

\[
q \leftarrow \left\lfloor \frac{p + r}{2} \right\rfloor
\]

Merge-Sort *(A, p, q)*

Merge-Sort *(A, q+1, r)*

Merge *(A, p, q, r)*

To sort \(A = \langle A[1], A[2], \ldots, A[n] \rangle \):

Merge-Sort *(A, 1, n)*
Merge-Sort

Running Time:

\[T(n) = T_D(n) + 2T(n/2) + T_M(n) \]

\[T(1) = c_1 \quad \text{for some } c_1 > 0 \]

\[T_D(n) = c_2 \quad \text{for some } c_2 > 0 \]

\[T_M(n) = c_3 n \quad \text{for some } c_3 > 0 \]

We can show that

\[T(n) = dn \log n \quad \text{for some } d > 0 \]
Properties of Sorting Algorithms

• **In place**
 only a constant number of elements of the input array are ever stored outside the array

• **Comparison based**
 the only operation we can perform on keys is to compare two keys

 A non-comparison based sorting algorithm
 – looks at values of individual elements
 – requires some prior knowledge

• **Stable**
 elements with the same key keep their order
Heap Sort

- Running time – roughly $n \log(n)$
 like Merge Sort
 unlike Insertion Sort

- In place
 like Insertion Sort
 unlike Merge Sort

- Uses a heap
Binary Trees
Binary Trees

Recursive Definition:
A binary tree
• contains no nodes (Λ),
or
• has 3 disjoint components:
 – a root node, with
 – one binary subtree called its left subtree, and
 – one binary subtree called its right subtree
Complete Binary Trees

A Binary Tree is complete if every internal node has exactly two children and all leaves are at the same depth:

- **Leaf**: a node whose subtrees are empty
- **Depth of a node**: # of edges on path to the root
Complete Binary Trees

Height of a node: Number of edges on longest path to a leaf

Height of a tree = height of its root

Lemma: A complete binary tree of height h has $2^{h+1}-1$ nodes

Proof: By induction on h

$h=0$: leaf, $2^1-1=1$ node

$h>0$: Tree consists of two complete trees of height $h-1$ plus the root. Total: $(2^h-1) + (2^h-1) + 1 = 2^{h+1}-1$
Almost Complete Binary Trees

An almost complete binary tree is a complete tree possibly missing some nodes on the right side of the bottom level:
(Binary) Heaps - ADT

- An almost complete binary tree
- each node contains a key
- Keys satisfy the heap property:
 each node’s key ≥ its children’s keys
Binary Tree

An array implementation:

- **root** - at $A[1]$
- **parent(i)** is in $A[i/2]$
 - Left(i) is in $A[2i]$
 - Right(i) is in $A[2i+1]$

height of a node - longest path down to a leaf
height of the tree - height of the root
Implementing Heaps by Arrays

Parent(A,i)
return \[i/2\]

Left(A,i)
return 2i

Right(A,i)
return (2i+1)

Heapify(A,i) - fix Heap properties given a violation at position i

```
A = 16 10 13 8 5 9 3 2 1 4
```

```
Parent(A,i)
return [i/2]

Left(A,i)
return 2i

Right(A,i)
return (2i+1)
```
Heapify Example

A = \begin{array}{cccccccc}
16 & 1 & 13 & 10 & 5 & 9 & 3 & 2 & 8 & 4
\end{array}

Heapify(A,i) - fix Heap properties given a violation at position i
Heapify Example

\[
A = \begin{bmatrix}
16 & 1 & 13 & 10 & 5 & 9 & 3 & 2 & 8 & 4
\end{bmatrix}
\]
Heapify Example

A =

\[
\begin{array}{cccccccc}
16 & 10 & 13 & 1 & 5 & 9 & 3 & 2 & 8 & 4 \\
\end{array}
\]
Heapify Example

A = 16 10 13 8 5 9 3 2 1 4
Heapify

Heapify(A, i)
1 left ← Left(i) /* 2i */
2 right ← Right(i) /* 2i+1 */
3 if left ≤ heap-size and A[left] > A[i]
4 largest ← left
5 else largest ← i
7 largest ← right
8 if largest ≠ i
9 swap(A[i], A[largest])
10 Heapify(A, largest)
Heapify - Running Time

• $c_1 > 0$ - to fix relationships among $A[i], A[\text{Left}(i)], A[\text{Right}(i)]$
• Height of the tree is $\log n$, so

$$T(n) \leq d\log n$$

\Rightarrow Heapify on a node of height h takes roughly dh steps
Build-Heap

BuildHeap(A)
1 heapsize[A] ← length[A]
2 for i ← length[A]/2 downto 1
3 Heapify(A, i)

Running Time: at most cn for some $c > 0$

Build-Heap - Running Time

- We have about $n/2$ calls to Heapify
- Cost of $\leq d\log n$ - for each call to Heapify

\Rightarrow TOTAL: $\leq d(n/2)\log n$

But we can do better and show a cost of cn to achieve a total running time linear in n.
Build-Heap - Running Time

• Assume $N = 2^k - 1$ (a full binary tree of height k)
 - Level 1: $k - 1$ steps for 1 item
 - Level 2: $k - 2$ steps for 2 items
 - Level 3: $k - 3$ steps for 4 items
 - In general: Level i: $k - i$ steps for 2^{i-1} items
 - Until Level $k-1$: 1 step for 2^{k-2} items

\[
\text{Total Steps} = c \sum_{i=1}^{k-1} (k - i)2^{i-1} = c(2^k - k - 1) = c'N
\]

By induction on k
Heap-Sort

Heap-Sort(A)
1 Build-Heap(A)
2 for i ← heap-size[A] downto 2
4 heap-size[A] ← heap-size[A]-1
5 Heapify(A,1) /* fix heap */

Running Time: at most $d n \log n$ for some $d > 0$
Priority Queue ADT

Priority Queue – a set of elements S, each with a key

Operations:

- **insert** (S, x) - insert element x into S

 $S ← S \cup \{x\}$

- **max** (S) - return element of S with largest key

- **extract-max** (S) - remove and return element of S with largest key
Heap-Maximum

Heap-Maximum(A)

1 if heap-size[A] ≥ 1
2 return(A[1])

=> **Running Time:** constant
Heap Extract-Max

Heap-Extract-Max(A)

1 if heap-size[A] < 1
2 error "heap underflow"
3 max ← A[1]
5 heap-size[A] ← heap-size[A]−1
6 Heapify(A,1)
7 return max

Running Time: \(d\ lg n + c = d'\ lg n\)

when \(heap-size[A] = n\)
Heap Insert

A = [16, 10, 13, 8, 5, 9, 3, 2, 1, 4, _]
Heap Insert

A =

16 12 13 8 10 9 3 2 1 4 5
Heap-Insert

Heap-Insert(A, key)

1. heap-size[A] ← heap-size[A] + 1
2. i ← heap-size[A]
3. while i > 0 and A[parent(i)] < key
 5. i ← parent(i)
4. A[i] ← key

Running Time: \(\text{d} \log n \)

when heap-size[A] = n
PQ Sorting

PQ-Sort (A)
1 S ← φ
2 for i ← 1 to n
3 Heap-Insert(S,A[i])
4 for i ← n downto 1
5 SortedA[i] ← Extract-Max(S)

PQ here stands for Priority Queue