Simplified Bellman-Ford

1 Initialize: \(d := \infty; \ d[s] \leftarrow 0; \ \pi := \text{nil}; \)
2 for \(m \leftarrow 1 \) to \(|V| - 1\)
3 for all \((u,v)\) in \(E \) do
4 \hspace{1em} if \(d[v] > d[u] + w(u,v) \) then
5 \hspace{2em} \(d[v] \leftarrow d[u] + w(u,v); \)
6 \hspace{2em} \(\pi[v] \leftarrow u \)
Negative Cycles

Claim: A negative cycle exists iff the $|V|=n^{th}$ loop of

3. for all $(u,v) \in E$ do
4. if $d[v] > d[u] + w(u,v)$ then
5. $d[v] \leftarrow d[u] + w(u,v)$;
6. $\pi[v] \leftarrow u$

produces a change.
No Change on Cycle

Use d (resp. d') to denote the array before (resp. after) the nth loop. Then

$$d'[p_{i+1}] \leq d[p_i] + w(p_i, p_{i+1}) \quad \text{for } i=1, \ldots, k$$

$$\sum d'[p_{i+1}] \leq \sum d[p_i] + \sum w(p_i, p_{i+1})$$
Negative loops

\[\sum w(p_i, p_{i+1}) < 0 \]

For all \(i = 1, \ldots, k \)

\[\sum d'[p_{i+1}] \leq d[p_i] + w(p_i, p_{i+1}) \]

\[\sum d'[p_{i+1}] \leq \sum d[p_i] + \sum w(p_i, p_{i+1}) < \sum d[p_{i+1}] \]
Computational Geometry and Convex Hulls
The Convex Hull Problem

Given n points $p_0, p_1, \ldots, p_{n-1}$ in the plane, find the smallest convex polygon that contains all points $p_0, p_1, \ldots, p_{n-1}$.

![Diagram of convex hull with points $p_0, p_1, \ldots, p_{n-1}$]
The Convex Hull Problem

Given n points $p_0, p_1, \ldots, p_{n-1}$ in the plane, find the smallest convex polygon that contains all points $p_0, p_1, \ldots, p_{n-1}$.
Applications of Convex Hull

• Packing: Smallest box or wrapping
• Robotics: Avoiding obstacles
• Graphics and Vision: Image and shape analysis
• Computational geometry: Many applications, e.g.
 – Finding farthest pair of points in a set
Definitions

• A set Q is **convex** if x in Q and y in Q implies that xy in Q.

• The **segment** xy is the set of all points $ax + by$ with $a \geq 0, b \geq 0,$ and $a+b=1$.

• A **convex combination** of points x_1, \ldots, x_k is $a_1x_1 + \ldots + a_kx_k$ with $a_i \geq 0$ and $a_1 + \ldots + a_k = 1$.
Definitions of convex hull

• The set of all convex combinations (of d+1 points)
• Intersection of all convex sets that contain Q
• Intersection of all half-spaces that contain Q

In the plane:
• Smallest convex polygon P that encloses Q
• Enclosing convex polygon P with smallest area
• Enclosing convex polygon P with smallest perimeter
• Union of all triangles determined by points in Q
Convex Hull by Jarvis March - Example
The Jarvis March Algorithm

$JavisMarch(Q)$
1. Find the index i_0 of the lowest point in Q
2. $i \leftarrow i_0$
3. repeat
 for each $j \neq i$ do
 compute angle q_j from previous hull edge;
 $k \leftarrow$ index of point with the smallest q_k;
 Output (p_i, p_k) as a hull edge;
 $i \leftarrow k$
 until $i = i_0$

Points are output in their order of appearance on the convex hull polygon.
Jarvis March - Complexity

\[T(n) = \Theta(n \cdot h), \]

where \(h \) = number of vertices on the convex hull
Computing Relative Orientation

1. Given directed line segments $\overrightarrow{p_0p_1}$ and $\overrightarrow{p_0p_2}$, determine whether $\overrightarrow{p_0p_1}$ is clockwise from $\overrightarrow{p_0p_2}$ with respect to point p_0?

2. Given two line segments $\overrightarrow{p_0p_1}$ and $\overrightarrow{p_1p_2}$, if we traverse $\overrightarrow{p_0p_1}$ and then $\overrightarrow{p_1p_2}$, do we make a left turn at point p_1?
Cross Products

\[p_1 \times p_2 = x_1y_2 - y_1x_2 \]
\[= -p_2 \times p_1 \]

\[p_1 = (x_1, y_1) \]
\[p_2 = (x_2, y_2) \]
Relative Orientation

\[(0,0)\]

\[p_1\]
Relative Orientation

1. Given directed line segments $\overrightarrow{p_0p_1}$ and $\overrightarrow{p_0p_2}$, determine whether $\overrightarrow{p_0p_1}$ is clockwise from $\overrightarrow{p_0p_2}$ with respect to point p_0?

Compute $\Pi = p_1 \times p_2$

if $\Pi > 0$, then $\overrightarrow{p_0p_1}$ is clockwise from $\overrightarrow{p_0p_2}$

if $\Pi < 0$, then $\overrightarrow{p_0p_1}$ is counterclockwise from $\overrightarrow{p_0p_2}$
Relative Orientation

2. Given two line segments \(p_0p_1 \) and \(p_1p_2 \), if we traverse \(p_0p_1 \) and then \(p_1p_2 \), do we make a left turn at point \(p_1 \)?

Compute \(\Pi = (p_1 - p_0) \times (p_2 - p_0) \)

if \(\Pi > 0 \), then we make a right turn at \(p_1 \)

if \(\Pi < 0 \), then we make a left turn at \(p_1 \)
The Graham Scan Algorithm

GrahamScan(Q)
1. $p_0 \leftarrow$ the point with the minimum y-coordinate
2. sort the remaining points $<p_1, \ldots, p_m>$ in Q, by the angle in counterclockwise order around p_0
3. Top(S) $\leftarrow 0$
4. Push (p_0, S); Push (p_1, S); Push (p_2, S)
5. for $i \leftarrow 3$ to m do
6. while angle formed by the points NextToTop(S), Top(S), p_i makes a non-left turn do
7. Pop(S)
8. Push (p_i, S)
9. Endfor
10. return S

Show the example!
Graham Scan - Example
The Graham Scan Algorithm

GrahamScan(Q)

1. \(p_0 \leftarrow \) the point with the minimum y-coordinate
2. sort the remaining points \(<p_1, \ldots, p_m>\) in \(Q \), by the angle in counterclockwise order around \(p_0 \)
3. \(\text{Top}(S) \leftarrow 0 \)
4. \(\text{Push}(p_0, S); \text{ Push}(p_1, S); \text{ Push}(p_2, S) \)
5. for \(i \leftarrow 3 \) to \(m \) do
6. while angle formed by the points \(\text{NextToTop}(S), \text{Top}(S), p_i \) makes a right turn do
7. \(\text{Pop}(S) \)
8. \(\text{Push}(p_i, S) \)
9. Endfor
10. \(\text{return } S \)
Graham Scan - Complexity

\[T(n) = \Theta(n \log n) + c \cdot n = \Theta(n \log n) \]

Can we do better than \(O(n \log n) \)?

If we could, we could sort faster than \(O(n \log n) \). So

Lower bound: Computing the Convex Hull requires \(\Omega(n \log n) \) in the worst case.
Improving Hull algorithms

- Compute extreme points in 4 directions
- Eliminate internal points (How?) in $\Theta(n)$
- Run a standard Convex Hull algorithm

- On a random distribution, only $\Theta(n^{0.5})$ points are left