תרגיל בית מס' 9

שאלה מס' 1 - עומס אקטיבי:

א. השפעת השעמים האקטיביים על מעגל

:**Common-Source**

א. נ cümle השערת העומס האקטיבי של מעגל עם עומס התנגדותי רגיל, \(D\), \(R\), \(D\), \(R\), \(D\), \(R\), \(D\), \(R\).

נמצא תחילה את נקודת העבודה של הטרנזיסטור \(M_1\):

\[
V_{g_1} = V_{dd} \frac{R_{g_2}}{R_{g_2} + R_{g_1}} = 2 \text{[volt]}
\]

\[\Rightarrow V_{g_1} = V_{g} = 2 \text{[volt]}\]

ג. ננתח את אחרים של הטרנזיסטור בנקודת העבודה, \(I_{ds_1} = K \left(V_{g_s} - V_t\right)^2 = 1 \text{[mA]}\)

ד. ננתח את אחרים של הטרנזיסטור אחר אף הוא \(V_{ds_1} = V_{dd} - R_d I_{ds_1} = 10 - 3[\text{K}\Omega] \cdot 1[\text{mA}]) = 7 \text{[volt]} > V_{g_1} - V_t = 1 \text{[volt]}\)

לכן, ננתה החרות להסחה נ manhנה.

נесь את הרמסים לאזור כתרקע בקודット העבורה:

\[
g_m = 2K \left| V_{g_s} - V_t \right| = 2 \text{[m} \Omega]\]

\[
r_n = \frac{1}{\lambda I_{ds_1}} = 94 \text{[K}\Omega]\]
עתה, נשרטט סכימת תמורה של המעגל הבא:

![схемה מעגל תמורה](image)

וןל לאראה את המתח סכימת מעגל התמורה כים ומקבלים ריקה על למעגל:

\[A_m = -g_m \left(r_o || R_p \right) = -5.8 \]

וה항נוד המוצא של מעגל התמורה הוא:

\[R_{out} = r_o || R_p = 2.9 \text{[}k\Omega\text{]} \]

ב. מעגל עם עומס אקטיבי – טרנזיסטור transisstor המוצאת חידוקulis:

![{}).transisstor חידוקulis](image)

נתחיל שוב ממיראת נקודת עבודה של טרנזיסטורים.

כומ בפניע,ENE, עניב טרנזיסטור \(M_1 \):

\[V_{G_1} = V_{dd} \frac{R_{G_1}}{R_{G_1} + R_{G_2}} = 2[\text{volt}] \]

\[\Rightarrow V_{G_1} = 2[\text{volt}] \]

והזרם בטרנזיסטור \(M_1 \) (כומ בפניע, ENENE, נתחה כטרנזיסטור פנימי):

\[I_{D_{S_1}} = K_1 \left(V_{G_{S_1}} - V_{T_i} \right)^2 = 1[\text{mA}] \]

ונמק לראה את גם טרנזיסטור \(M_2 \) (ก่อสร้างטרנזיסטור \(M_2 \) –ookies טוב – יארן הטרנזיסטור החלקו המוצא):

\[I_{D_{S_2}} = K_2 \left(V_{G_{S_2}} - V_{T_i} \right)^2 = I_{D_{S_1}} = K_1 \left(V_{G_{S_1}} - V_{T_i} \right)^2 = 1[\text{mA}] \]
הברו-ה מוגדר כ- Gate-Drain Waterproof (V_{G_2} = V_{D_2})

כיסוי בלוך, López, החיבור מוביל רק ברוויה.
ולכן, מrador החיבור של החיבור M_2 יוצר אולם מדור גורם M_2
ולכן, מrador מהדורה בiard בין חיבור M_2

הטרנזיסטור:

\[
I_{DS_2} = K_2 \left(V_{GS_2} - V_{R_2} \right)^2 = 1 [mA]
\]

\[
V_{GS_2} = V_{DS_2}
\]

\[
I_{DS_2} = K_2 \left(V_{DS_2} - V_{R_2} \right)^2 = 1 [mA]
\]

\[
V_{DS_2} = 2 [V]
\]

לכל מדור h buurt החיבור Drain ידוע, לכל:

\[
V_{DS_2} = V_{DO} - V_{S_2} = 10 [V] - V_{S_2} = 2 [V]
\]

\[
V_{S_2} = 8 [V]
\]

M_2 בשיעד יתקדס מספר חיבור החיבור M_1
ולכן, מדור גורם M_2

הטרנזיסטור אג מדור:

ובנוסף את הפרמטרים לאולם קוטב בנקודת העברה:

\[
g_m = 2 K_1 \left| V_{GS_1} - V_{R_1} \right| = 2 [m\Omega]
\]

\[
r_{\alpha} = \frac{1}{\lambda I_{DS_1}} = 94 [K\Omega]
\]

\[
g_m = 2 K_2 \left| V_{GS_2} - V_{R_2} \right| = 2 [m\Omega]
\]

\[
r_{\alpha} = \frac{1}{\lambda I_{DS_2}} = 94 [K\Omega]
\]

ענת, מ WebDriver סכימת תמורה של המודול הנייד:

\[
g_1\quad (\text{V}_{\text{in}})\quad V_{g_s_1}\quad g_m\cdot V_{g_s_1}\quad r_{\alpha_1}\quad r_{\alpha_2}\quad \frac{1}{g_m}\quad V_{out}\]
הגבר המוען:

\[A_{om} = -g_m \left(\frac{r_v}{g_m} \right) \approx -\frac{g_m}{g_m} = -1 \]

הтангенצ המзыва של המעגל היא:

\[R_{out} = r_v \left(\frac{1}{g_m} \right) \approx \frac{1}{g_m} = 500[\Omega] \]

נשים לב, כי ערכי הגבר והทานгенצ המзыва של מעגל ששני העיניים, הם ממוכסים ומקול慝ים. התなんか במעגל מסעיים. וכלכל, מעגל המסוגל זה המסוגל ליציג את המ setObject העובד.

ב. מעגל עם עומס אקטיבי – טרנזיסטור mosfet החלשת הוולון:

נשים לב שבמעגל זה ישנו טרנזיסטור החלשת הוולון \(M_2 \) אשר ה- \(\text{Gate} \) \(\text{Sourc} \) שלו מקול fırs.

המשמעות היא שהטרנזיסטור זה תמיד בוולון \(G S \ G S T V V V = \Rightarrow G S \Rightarrow G S - V_T \). כמו כן, טרנזיסטור החלשת הוולון במצב זה, מושפע זרימה היוצרת המוביל.

נחשב את הזרם בטרנזיסטורים ללא הזנחת אפקט התקצרות התעלה:

\[I_{DS} = K_I \left(V_{GS} - V_T \right)^2 \left(1 + \lambda V_{DS} \right) = I_{DS} = K_I \left(V_{GS} - V_T \right)^2 \left(1 + \lambda V_{DS} \right) \]

נשים לב שמיDownLatch:

\[V_{GS} = 0[V] \]
\[V_{GS} = 2[V] \]
\[V_{T} = -1[V] \]
לכן נקבל כי:

\[
V_{DS_1} = V_{DS_2}
\]
\[
V_{D_1} = V_{S_2}
\]

\[
\Rightarrow V_{DS_1} + V_{DS_2} = V_{D_1} + V_{D_2} - V_{S_2} = V_{DD}
\]

\[
\Rightarrow V_{DS_1} = V_{DS_2} = 5[V]
\]

לפיכך שני הטרנזיסטורים处在工作状态。

עתה נחשב את הפרמטרים:

\[
I_{DS_1} = I_{DS_2} = K_2 \left(V_{GS_2} - V_{T} \right)^2 \left(1 + \lambda V_{DS_2} \right)
\]
\[
I_{DS_1} = I_{DS_2} = 1[mA] \left(1 + 0.01 \cdot 5 \right) = 1.05[mA]
\]

נחשב את הפרמטרים לאות קטן בנקודת העבודה:

\[
g_m = 2K_1 \left| V_{GS_1} - V_{T} \right| = 2[mA]
\]
\[
r_{o_1} = \frac{1}{\lambda I_{DS_1}} = 95[K\Omega]
\]
\[
g_m = 2K_2 \left| V_{GS_2} - V_{T} \right| = 2[mA]
\]
\[
r_{o_2} = \frac{1}{\lambda I_{DS_2}} = 95[K\Omega]
\]

עתה,ишרטט סכימת תמורה של המעגל

הנה המגע:

\[
A_{vo} = -g_m \left(r_{o_1} \parallel r_{o_2} \right) = -95
\]

הטרנסודר המגש של המגע התלוי:

\[
R_{vo} = r_{o_1} \parallel r_{o_2} = 47.5[K\Omega]
\]

כلازم, כך אנחנו מצפים את התכונות התלויות או תכונות התלויות במספר מבנה של המגע

הנה המגע המגש של המגע התלוי.
על מנת לחשב את מתח ה-DC ב-\text{drain} של התרנגולס \(M_2 \), נמצאו את מתח ה-DC \(\text{gate} \) של התרנגולס \(M_2 \) והדרים מצב וויה.

נתמך המניצאת הזורם תרנגולס \(M_3 \):

\[
I_{DS_3} = K_3 \left(V_{GS_3} - V_{T_s} \right)^2 = K_3 \left(V_{D_3} - V_{DD} - V_{T_s} \right)^2 = 0.2 \left(I_{DS_3} \cdot 6.7 \left[K \Omega \right] - 10 - \left(-1 \right) \right)^2
\]

\[
I_{DS_3} = 1[mA] \cdot 1.79[mA]
\]

ולכן, מכוון שיש לנו ראי וויה ובגרוזה אפקט התקררות התעלה, נוטים לומר כי:

\[
V_{DS_3} = V_{GS_3}
\]

\[
\Rightarrow I_{DS_3} = I_{DS_2} = I_{DS_1} = 1[mA]
\]

ענתה נמצאה את מתח ה-\text{drain} \(V_{D_3} \) עניי השוואת הזורמים ללא הצעת אפקט התקררות התעלה:

\[
I_{DS_3} = K_1 \left(V_{GS_3} - V_{T_s} \right)^2 \left(1 + V_{DS_3} \right) = 1[mA] = I_{DS_3} = K_2 \left(V_{GS_3} - V_{T_s} \right)^2 \left(1 + \lambda_2 V_{DS_3} \right)
\]

\[
1 \left[\frac{mA}{V^2} \right] \left(2 - 1 \right)^2 \left(1 + 0.01V_{D_3} \right) = 0.2 \left[\frac{mA}{V^2} \right] \left(V_{GS_3} - 1 \right)^2 \left(3 - 0.2V_{D_3} \right)
\]

\[
1 + 0.01V_{D_3} = 0.2 \left(-2.3 \right)^2 \left(3 - 0.2V_{D_3} \right) = 3.174 - 0.2116V_{D_3}
\]

\[
\Rightarrow V_{D_3} = 9.81[V]
\]
כפי שניתן לראות, המודל \(M_2 \) לא rehears מתוכן. השפעת \(\lambda_{2,3} = -0.4 \text{V}^{-1} \) הביעה ייחודה מפורשת. המידה של \(\lambda \) שפורסמה, גם לאחר התיקון שפורסם, לא קיים.

מי שעלה על כך שיש טעות בשאלה, לא נקנס.

נחשב את הפרמטרים של \(\lambda \) בנקודת העבודה:

\[
g_m = 2K_1 \left| V_{GS_1} - V_T \right| = 2 \left[\text{m} \Omega \right] \\
r_\alpha = \frac{1}{\lambda I_{DS_1}} = 94 \left[\text{K} \Omega \right] \\
g_m = 2K_2 \left| V_{GS_2} - V_T \right| = 2 \left[\text{m} \Omega \right] \\
r_\alpha = \frac{1}{\lambda I_{DS_2}} = 94 \left[\text{K} \Omega \right]
\]

ועתה, נשרטט סכימת תמורה של המעגל הנ"ל:

הגבר המגול:

\[
A_v = -g_m \left(r_\alpha \parallel r_{02} \right) = -95
\]

החמר המגול של המגול הינו:

\[
R_{out} = r_\alpha \parallel r_{02} = 47.5 \left[\text{K} \Omega \right]
\]

آن ראויה כי היא שין בזבצ במחנה המגולה המגולהجوزCUSHלא כלום.

ה. מович בשתימת השל שימושים הקדומים.
A circuit question: 2

The output voltage of M6 gate

\[V_{GS6} = V_{DS6} = 1.5 \text{ V} \quad ; \quad I_{D6} = 0.25 \text{ mA} \]

\[I_{D5} = 8I_{D6} = 2 \text{ mA} \]

\[V_{GS5} = V_{GS6} = 1.5 \text{ V} \]

\[I_{D1} = I_{D2} = I_{D3} = I_{D4} = 1 \text{ mA} \]

\[V_{GS1} = V_{GS2} = 1.5 \text{ V} \quad ; \quad V_{GS3} = V_{GS4} = 3 \text{ V} \]

Checking parameters for the small:

\[g_m = 2\sqrt{KI_D} \quad ; \quad r_0 = 1 / (\lambda I_D) \]

\[g_{m1} = g_{m2} = 4 \text{ mS} \quad ; \quad r_{o1} = r_{o2} = 50 \text{ k}\Omega \]

\[g_{m3} = g_{m4} = 1 \text{ mS} \quad ; \quad r_{o3} = r_{o4} = 25 \text{ k}\Omega \]

\[g_{m5} = 8 \text{ mS} \quad ; \quad r_{o5} = 25 \text{ k}\Omega \]

\[g_{m6} = 1 \text{ mS} \quad ; \quad r_{o6} = 200 \text{ k}\Omega \]

When \(\omega \to 0 \) the capacitor \(C_5 \) becomes open.

The gain for the differential stage between transistors \(M_1 \) and \(-M_2 \), assuming the stage is a common source amplifier (CS), is determined by:

\[A_d = g_{m2}(r_{o2} || r_{o4}) = 66.667 = 36.48 \text{ dB} \]

\[A_c = 0 \]

Testing parameters for the entire:

\[v_{out} = v_{inn} - g_{m2}(r_{o2} || r_{o4}) + v_{imp} - g_{m1}(r_{o1} || r_{o3} || 1/g_{m3}) - g_{m4}(r_{o2} || r_{o4}) \approx \]

\[v_{out} = v_{inn} - g_{m2}(r_{o2} || r_{o4}) + v_{imp} - g_{m1}(1/g_{m3}) - g_{m4}(r_{o2} || r_{o4}) = \]

\[v_{out} = v_{inn} - g_{m2}(r_{o2} || r_{o4}) + v_{imp} + g_{m2} (r_{o2} || r_{o4}) = -2g_{m2}(r_{o2} || r_{o4}) - v_{ind} / 2 \]

\[v_{out} = -g_{m2}(r_{o2} || r_{o4}) / (1 + g_{m2}^2r_{o5}) \cdot v_{inn} + 2g_{m2}(r_{o2} || r_{o4}) / (1 + g_{m2}^2r_{o5}) \cdot v_{imp} = 0 \]

\[A_c = 0 \]
when \(\omega \to \infty \) we get \(C_5 \) to act as a short.

For the differential gain, there is a virtual ground between transistors \(M_1 \) and \(M_2 \), therefore \(C_5 \) is not changed.

The solution is the same as in the previous paragraph.

For the common-mode gain of transistors \(M_1 \) and \(M_2 \), there is no opposition (since \(C_5 \) shorts \(r_{o5} \)), and the two differential paths will cancel each other:

\[
v_{\text{out}} = -g_{m2}(r_{o2} \parallel r_{o4}) \cdot v_{\text{in}} + g_{m2}(r_{o2} \parallel r_{o4}) \cdot v_{\text{imp}} = 0\]

\(A_c = 0 \)

Note:

When the output is single ended \(\text{CMRR} \) is defined as the output voltage due to a change in the common-mode input signal. The common-mode input signal is small compared to the differential input signal.

The differential input signal is applied to the common-mode input stages, and the differential output is the difference between the two signals.

\[
20\log|A_d| = 90.5 \text{ dB}
\]
ała מט' 3:

ה.gsubים של \(Q_1\) ו\(Q_2\) מקוצרים, כמו גם האמיטרים שלהם. לכן, \(V_{BE} = V_{BE2} \Rightarrow I_{E1} = I_{E2}\) \(\Rightarrow I_{C1} = I_{C2}\).\\(\beta \rightarrow \infty\)\\(\Rightarrow I_{B1} = I_{B2} = 0\).

\[I_{out} = I_{C2} = I_{C1} = I_{in}\]

ג.

ענין בימים, \(I_x\) כפלי שומפע ברכת:\\

\[I_x = I_{B1} + I_{B2}\]
\[I_{in} = I_{C1} + I_x\]

מכה שורמי האמיטרים שווים, ו_featured המbbeר חומרים\\
\[I_{B1} = I_{B2}\]
\[I_{C1} = I_{C2}\]

ומכן\\
\[I_{out} = I_{C2} = I_{C1} = I_{in} - 2I_{B1} = I_{in} - 2(I_{C1}/\beta) = I_{in} - 2(I_{out}/\beta)\]
\[I_{out} = I_{in} \cdot \frac{\beta}{\beta + 2} = I_{in} \cdot \frac{1}{1 + \frac{2}{\beta}}\]

ומ택\(\beta \rightarrow \infty\) עלולה להיות קריטית.

ד.

מקור הזרם \(I_{in}\) מספק זרם DC בלבד,клон במנדל לאורח קסם ו_keyboard מתאפס (חותổ לנדק). נותר מקור מתאים לביצת \(V_{in2}\) וקנדק את הזרם \(V_{out2}\) רכיזי - מכפי שמдает ברשת\\

\[R_{out} = r_{out2} = r_{out}\]

מדאש שלן כל מקור בכנות אוגד \(V_{in2} = 0\),\\(\Rightarrow V_{out2} = 0\) ומקאן.
As in paragraph A, also in this paragraph \(V_{BE1} = V_{BE2} \), and
\[I_{E1} = I_{E2} \], \(I_{C1} = I_{C2} = I_{C3} = I_{out} \),

consequently, \(I_{B1} = I_{B2} \), and \(I_{B3} = 0 \).

Because the base current is negligible,
in each transistor, \(I_{C} = I_{E} \), and therefore
\(I_{in} = I_{C1} = I_{C2} = I_{C3} = I_{out} \).

We use the small signal model, \(I_{x} \), as shown in the diagram:
\[V_{BE1} = V_{BE2} \]
\[I_{E1} = I_{E2} \] \(; \) \(I_{C1} = I_{C2} \) \(; \) \(I_{B1} = I_{B2} \)

(1) \(I_{in} = I_{C1} + I_{B3} \)
(2) \(I_{out} = I_{C3} = \beta I_{B3} \)

Calculate the currents and voltages as follows:
\(I_{C1} = \alpha I_{E1} \); \(\alpha = \beta / (\beta + 1) \)
\(I_{B3} = I_{E3} / (\beta + 1) \)
\(I_{E3} = I_{C2} + I_{x} = I_{C2} + I_{B2} + I_{B1} = I_{C1} + 2I_{B1} = \)
\(= (\beta + 2)I_{B1} = (\beta + 2) \cdot I_{E1} / (\beta + 1) \)
\(I_{B3} = I_{E3} / (\beta + 1) = I_{E1} \cdot (\beta + 2) / (\beta + 1)^2 \)

Using equations (3)-(4), we get:
(3) \(I_{in} = \alpha I_{E1} + I_{E1} \cdot (\beta + 2) / (\beta + 1)^2 \)
(4) \(I_{out} = \beta \cdot I_{E1} \cdot (\beta + 2) / (\beta + 1)^2 \)

Finally, for this case, \(R_{out} \) and the ultimate output resistance, \(r_{out3} \), we get:
\[r_{out3} = \frac{1}{\beta} \]

Connected to the voltage source, \(V_{out} \), the input current, \(i_{1} \), is:
\[i_{1} = \frac{1}{r_{out3}} \]

\[g_{m}V_{3} \]

\[r_{m3} \]

\[r_{out1} \]

\[r_{out2} \]
ראשית, נשים לב כי כמות כל,عرוכות של זרם הזרם זורם g_m v_1, ומאות של неск פורמטים והרנרטורים שווים, גורםلاحמה REFERENCES מונחים בפסitta

(1) i_x + g_m v_3 = i_1 \quad \Rightarrow \quad i_x = i_1 - g_m v_3

(2) v_3 = -(i_1 - i_t) r_e

(3) i_x = i_1 + g_m r_e (i_t - i_1) = i_1 + \beta (i_t - i_1)

(4) i_y = (i_t - i_1) - i_1 = i_t - 2i_1

(5) v_t = i_x r_{out} + i_t r_e

(6) v_t = i_t r_{out} - v_3 + i_y r_{out}

(7) i_y = (i_t r_e (\beta + 2) - i_t r_n) / r_{out} \equiv (i_t r_e - i_t r_n) / r_{out}

(8) i_t = i_t \cdot (r_{out} + r_e) / (2r_{out} + r_e) \equiv i_t / 2

(9) i_x = i_t / 2 + \beta i_t / 2 = i_t \cdot (\beta + 1) / 2 \equiv i_t \cdot \beta / 2

(10) v_t = i_t \cdot (r_{out} \cdot \beta / 2 + r_0 / 2) \equiv i_t \cdot r_{out} \cdot \beta / 2

(11) R_{out} = v_t / i_t = r_{out} \cdot \beta / 2

ראוי יותר Wilson משכはじ את זרומם היא❄או מעדן של זרום ושמנדו מפרים יותר מיום מריא זרומם ושיה את התרגשותי מropri

לטורטץ壽ך מ, ויה少し התנורית ניצאת נוכחות יוצר משל ראי זרומם (חשו פוטש (חושו פעיק ונסיעצ). ויה זה ישיג ונסיעצ.