בון במעגלים אלקטרוניים לענ誤ים (044142)

1 טור

לפני התויה את הבון שלהן ואת כל הפרטים ברך והשובה. הקפידו למלא את מספר היזיה שלכם ואת מספר אחרים.

<usizeigrated>משר הבחנה שעתייה. מותר השניהם בכל חומר עזר, חותם או מודפס, ובמحلولיות שיאיות יבלול לדפי עזר הם הבחנה בשיטת SPICE או הבחנה סימולציה דומה.
</usertext>

את ספרי העזר 1/2 בשתיות (15 ספרי) ואת ספרי עזר כל הסימולציות וערבים. ספרי שלכל 100 נקודות.

 bey

לא התزهرו את בשתיות 2 בשתיות (15 ספרי) את ספרי עזר כל הסימולציות וערבים. ספרי שלכל 100 נקודות.

בנることは מותר רצייל שלשתים בקרובים. היזיה בשתיות המרעה היא ±5%.

לא התزهرו בשתיות 2 בשתיות (15 ספרי) את ספרי עזר כל הסימולציות וערבים. ספרי שלכל 100 נקודות.

בנוהל...

ב artırת: הגה

 biçim השאלות אינן מימון בדומה את רומא הרקיה שלום. מספרי לעניין לכל השאלות ברוח היזיה שלום, הלחננים את היזי בпромышлен מורשל.
שאלאה - התוקן חרס וישומם מגה

מרגעם הצלחת פרק זו עד היום של טרנזיסטור שוחה על גודל תעלה של 10 נm (100 Å) בבלד. אנורק תעלה צור, זה, שإدارة טעינה קורבת ממקורות המימן שעון.

הגרשה היא גביש סיליקון, גוון להלינה תנועה בצלחת של האלקטרונים של כל שיניות תנועה באניורש משני drain - ל source הופך התנועה למשתנה של MOS. הצלחת פרק זה עולם פחות שבו (לאבהוד ממדים) חסימת סמלר בקורות צור טרנזיסטור בשני תעלות ואברות.

בגרותיה, הנגזרות מסומנות נסף, מקבילים את הממדים here (מודול בוליסטי) לקשר:

ורום-מאט בשטחי ה- NMOS

הזרום MMO

\[I_D = C_{ox} W \left(\frac{V_{GS} - V_T}{2m^*} \cdot V_{DS} \right)^2 \left(V_{GS} - V_T \right) \], \quad V_{DS} \leq V_{GS} - V_T

וחום MMO

\[I_D = C_{ox} W \left(\frac{q}{2m^*} \cdot V_{DS} \right)^{3/2} (1 + \lambda V_{DS}) \], \quad V_{DS} > V_{GS} - V_T

בשיאה:

\[m^* = \frac{m_o}{(1 + 2\lambda)^2} \]

\[q = 1.602 \times 10^{-19} \text{Cb} = \text{מגנט אלקטרון} \]

קרובセンיטל של ממון \(C_{ox} = \frac{\varepsilon_o}{t_{ox}} = \left[\frac{F}{m^2} \right] \)

\[\varepsilon_o = 4 \varepsilon_n = \text{מקדם דויאלקטרון של התוחמת השער} \]

\[\varepsilon_n = 8.8542 \times 10^{-12} \frac{F}{m} = \text{מקדם דויאלקטרון של הזרק} \]

\[W = \text{רוחב תעלה טרנזיסטור} \]

דרועת:

"שמית לטרון טרנסיסטור בין תחליפה כל אחד בקורות התעלה, מימו \(V_{BS} = 0 \) (אף פקט מעור)."

תור 1 - 2
נמצא בشهيدה בך המזחל הבלייסי למקלט קרליַּס שגולם בקורט עזר במרונים על
מלעתיו אונר א. ב. (1) בלתיי הנייר הטרניטורו פון בתרום אונורמ. רשה מופעל במענה

ב.1. מצע אות אפר务工יתתלטת שבחרו המהקולוב הלוע alist של הנקמה
ומחצובל למתויהל הבלייסי (משמעת התאזרור היא גול מברזת מודל ממלעתי

ואפר

(1)

\[\mu_r = \frac{0.145}{V \cdot \text{sec}} \]

1. מצע אות אפר务工יתתלטת שבחרו המהקולוב הלוע alist של הנקמה
ומחצובל למתויהל הבלייסי (משמעת התאזרור היא גול מברזת מודל ממלעתי

ואפר

(1)

\[L = 1 \mu m \]

\[L = 0.5 \mu m \]

\[L = 0.35 \mu m \]

\[L = 0.22 \mu m \]

\[L = 0.15 \mu m \]

\[L = 0.1 \mu m \]

2. מוח ערב שיל מלייבת מעבר בתרום אונורמיה? \(g_m \)

\[g_m = C_{as}W \sqrt{\frac{qV_{DS}}{2m_r}} \]

\[g_m = C_{as}W \sqrt{\frac{qV_{DS}}{2m_rV_{GS}}} \]

\[g_m = C_{as}W \sqrt{\frac{qV_{DS}}{2m_rV_{DS}}} \]

\[g_m = C_{as}W \sqrt{\frac{qV_{DS}}{2m_r(V_{GS}-V_T)}} \]

\[g_m = C_{as}W \sqrt{\frac{qV_{GS}-V_T}{2m_rV_{DS}}} \]

\[g_m = C_{as}W \sqrt{\frac{2(V_{GS}-V_T)}{2m_rV_{DS}}} \]
.3 חרותערכשהמללותהמעברבתחומדהורוית? \(g_m \) (8 נק')

\[
g_m = 2 \cdot \frac{I_D}{V_{GS}} \quad \text{א}
\]

\[
g_m = 3 \cdot \frac{I_D}{V_{GS}} \quad \text{ב}
\]

\[
g_m = \frac{1}{3} \frac{I_D}{V_{GS} - V_T} \quad \text{ג}
\]

\[
g_m = 2 \cdot \frac{I_D}{V_{GS} - V_T} \quad \text{ד}
\]

\[
g_m = \frac{3}{2} \frac{I_D}{V_{GS} - V_T} \quad \text{ה}
\]

\[
g_m = 3 \cdot \frac{I_D}{V_{GS} - V_T} \quad \text{ו}
\]

.4 חרותערכשהחרונגורתהמעזר \(r_o \) בתחומדהאורודיים (8 נק')

\[
r_o = \frac{C_{ao} W}{4} \sqrt[4]{\frac{q}{2m^* V_{DS}}} \left[2(V_{GS} - V_T) - 3V_{DS} \right] \quad \text{א}
\]

\[
r_o = \frac{4}{C_{ao} W} \left(\frac{2m^* V_{DS}}{q} \right)^{\frac{1}{3}} \left[2(V_{GS} - V_T) - 3V_{DS} \right]^{-1} \quad \text{ב}
\]

\[
r_o = \frac{1}{C_{ao} W} \left(\frac{2m^* V_{DS}}{q} \right)^{\frac{1}{3}} \left[2(V_{GS} - V_T) - 3V_{DS} \right]^{-1} \quad \text{ג}
\]

\[
r_o = \frac{C_{ao} W}{2} \sqrt{\frac{q}{2m^* V_{DS}}} (V_{GS} - V_T - V_{DS}) \quad \text{ד}
\]

\[
r_o = \frac{3}{C_{ao} W} \left(\frac{2m^* V_{DS}}{q} \right)^{\frac{1}{3}} (V_{GS} - V_T - V_{DS})^{-1} \quad \text{ה}
\]

\[
r_o = \frac{4}{C_{ao} W} \left(\frac{2m^* V_{DS}}{q} \right)^{\frac{1}{3}} (V_{GS} - V_T - V_{DS})^{-1} \quad \text{ו}
\]
לשם בחרת עיטול התורניסטור, ממושת המגע våב:

<table>
<thead>
<tr>
<th>נתוני התורניסטור</th>
<th>גчество המגע våב</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_T = 0.1 \text{ V})</td>
<td>(V_{DD} = 0.5 \text{ V})</td>
</tr>
<tr>
<td>(\lambda = 0.3 \text{ V}^{-1})</td>
<td>(R_i = R_2 = 50 \text{ kΩ})</td>
</tr>
<tr>
<td>(l_{ox} = 1 \text{ nm})</td>
<td>(R_s = 5 \text{ kΩ})</td>
</tr>
<tr>
<td>(W = 1 \text{ μm})</td>
<td>(R_D = 800 \text{ Ω})</td>
</tr>
<tr>
<td>(L = 10 \text{ nm})</td>
<td>(C_{in} \rightarrow \infty)</td>
</tr>
</tbody>
</table>

5. מודר הווה תורניסטור \(b \) (8 נק')

- א. \(110 \text{ μA} \)
- ב. \(210 \text{ μA} \)
- ג. \(320 \text{ μA} \)
- ד. \(500 \text{ μA} \)
- ה. \(700 \text{ μA} \)
- ו. \(1.25 \text{ mA} \)
מכאן ואילך יש להניח שעホームיסטר במעב רוחי, ושדותפרוטו לאות קנו הד

\[g_m = 3 \text{ mS} \]
\[r_o = 11 \text{ k\Omega} \]

\[
|A_v| = \left| \frac{V_{out}}{V_{in}} \right|
\]

.6 מודעعرל המורטל של הגבר המ.nn לאות קנו של המגע

\[
1.3 \quad a
1.9 \quad b
2.2 \quad c
4.1 \quad d
5 \quad e
6.2 \quad f
\]

.7 מודע הורנרגיט הפורצת של המגע לאות קנו

\[
745 \Omega \quad a
800 \Omega \quad b
845 \Omega \quad c
3.3 \kOmega \quad d
11 \kOmega \quad e
\infty \quad f
\]
שאלה II –モンבר ได-دفاع

נתון המנבר הדוא’:

נתוני התרגוסטרים

רגליים של האלמנטים הקטנים

dc

 negócio

 kształט

 מתח

 שהופך למחוז

 אל מגה

dc

 negocio

 kształט

 מתח

 שהופך למחוז

 אל מגה

g_{m1} = g_{m2} = 4 \text{ mS} - \text{ וברחית ו}
בשני הסעיפים הבאות (9, 10) יש להניח כי הגזרה \(R_1, R_2 \) קבוצת החישוב לתנאי ההבורה.

9. מון ערכים מסוימים של \(R_3 \) ברטרנזיסטורים העיר \(g_m \) מציאנה של הנראית (בטון בעל ידיעת \(g_m \))\(g_m \) (ערכונים) \(R_3 \).

\[
\begin{align*}
\text{א} & : R_3 > 13 \, \text{k}\Omega \\
\text{ב} & : R_3 > 2 \, \text{k}\Omega \\
\text{ג} & : \text{אי נדבר לערך המינימלי, } R_3 < \text{הгранич으ק ketogenic}.
\end{align*}
\]

10. מון ערכים המכסים של \(R_4 \) ברטרنزיסטורים העיר \(g_m \) מציאנה של הנראית (בטון בעל ידיעת \(g_m \))\(g_m \) (ערכונים) \(R_4 \).

\[
\begin{align*}
\text{א} & : R_4 < 13 \, \text{k}\Omega \\
\text{ב} & : R_4 < 17 \, \text{k}\Omega \\
\text{ג} & : \text{אי נדבר לערך המכסים, } R_4 < \text{הгранич הזה ketogenic}.
\end{align*}
\]
mcכ actividades וצלעות של להניח בטכנולוגיה sürüונית בורוזיה.

g_{m1} = g_{m2} = 4 \text{ mS}

11. מהו ערך המוחלט של הזרኍים? \[|A| = \frac{V_{\text{out}}}{V_{\text{in}}} \] (8 נק)

- \[|A| = 0.6 \] .א
- \[|A| = 0.75 \] .ב
- \[|A| = 1 \] .ג
- \[|A| = 40 \] .ד
- \[|A| = 50 \] .ה
- \[|A| = 1200 \] .ו

12. סימון של הגרזר הדמות \(A \), והאם (4 נק)

- \(+ \) .א
- \(- \) .ב

13. מהו ערך של התנודות היוצרות של המוחלט? \[R_{\text{out}} \] (8 נק)

- \(0 \) .א
- \(250 \ \Omega \) .ב
- \(500 \ \Omega \) .ג
- \(5.6 \ \text{k} \Omega \) .ד
- \(7.5 \ \text{k} \Omega \) .ה
- \(\infty \) .ו

14. בסעיף זה בולבל גזירת כ-מקבל \(C_5 \) ותוקן, איך ישנה ערך המוחלט של הגרזר הדמות? (4 נק)

- \(\gamma = 0.5 \ \text{V}^{1/2} \) .א
- \(\gamma \) ‏כ-מקבל .ב
- \(\gamma \) ‏לא ישנה .ג

15. בסעיף זה בולבל גזירת כ- neger תרמוניטור מהחבר M1 הדומולט של הגרזר הדמות? (4 נק)

- \(\gamma = 0.5 \ \text{V}^{1/2} \) .א
- \(\gamma \) ‏כ-מקבל .ב
- \(\gamma \) ‏לא ישנה .ג
<table>
<thead>
<tr>
<th>תajoות</th>
<th>תושב</th>
<th>שאלות</th>
</tr>
</thead>
</table>
| דרגת הזרם | \(g_m = \frac{\partial I_D}{\partial V_{GS}} \) | \(g_m = \frac{3}{2} \frac{I_D}{V_{GS} - V_T} \)
| \(r_o \) | \(r_o = \left(\frac{\partial I_D}{\partial V_{DS}} \right) \) | \(r_o = \frac{4}{C_{ox} W} \left(\frac{2mV_T}{q} \right)^2 \left(2(V_{GS} - V_T) - V_{os} \right)^3 \)
| \(R_{out} = r_0 \parallel R_D \) | \(R_{out} = r_0 \parallel R_D \) | 745 \(\Omega \) | |
| \(g_{m1} = 4 \text{ mS} \) | \(R_1 = 20 \text{ k} \Omega \), \(R_2 = 30 \text{ k} \Omega \) |
| \(R_1 > 2 \text{ k} \Omega \) | \(R_1 < 13 \text{ k} \Omega \) |
| \(|A_1| = 40 \) | \(- \) |
| \(R_{out} = \frac{1}{g_{m2}} || R_6 \) | \(250 \text{ } \Omega \) |

פתוח

- \(L = 0.35 \mu m \)
- \(g_m = C_{ox} W \left(\frac{qV_{DS}}{2m^*} \right) \)
- \(1 \)
- \(2 \)
- \(3 \)
- \(4 \)
- \(5 \)
- \(6 \)
- \(7 \)
- \(8 \)
- \(9 \)
- \(10 \)
- \(11 \)
- \(12 \)
- \(13 \)
- \(14 \)
- \(15 \)